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ANALYSIS OF THE TRANSIENT EXCITATION OF AN
ELASTIC ROD BY THE METHOD OF CHARACTERISTICS

Y, MENGlt and H. D. McNlvENt

University of California, Berkeley, California 94720

Abstract-The response of a semi-infinite, isotropieally elastie rod to a time dependent input on the end of the
rod is found using the method of characteristics, To reduce the problem to one where motions depend on only
one space variable and time the approximate theory for rods due to Mindlin and McNiven is used, The response
is found at stations near the end of the rod to a step input of pressure and is compared to the responses reported
in other published works and to a response found independently by the authors,

1. INTRODUCTION

THE response of a circular, semi-infinite, isotropically elastic rod to time dependent con
ditions on its end is a problem that has attracted a great deal of attention over the period
of the last fifteen years. It is a difficult problem and even though the studies to date have
been important there is much about the response of the rod that remains unknown, Most
of what is known concerns the response at stations far from the end of the rod. These
responses have been formulated using the exact three dimensional theory and integral
transforms and the integrals have been evaluated using the method of steepest descent.
This method limits the results to "large" values of the space variable dictating distant
stations, Even at these distant stations we have information only about the head of impulse
and no information behind it.

The first study was made by Skalak [1 J who formulated the problem using the exact
three-dimensional theory and found the response to a step input of velocity on the end
of the rod, He obtained an asymptotic solution for the head of impulse by representing
the frequency equation as the first two terms of a Taylor expansion about the origin of the
frequency-wave number plane,

Folk et al. [2J formulated the problem much the same as Skalak except that they used
mixed-mixed conditions on the end of the rod including a step input of pressure, Their
approximation of the integrals was also much the same as Skalak. Their most valuable
contribution was in suggesting a possible method, using saddle point, for finding informa
tion about the response at distances behind the head of impulse.

Kaul and McCoy [3J developed the problem differently in that instead of the exact
theory they used the approximate theory due to Mindlin and McNiven [4].

Jones and Norwood [5J extended the method of Skalak by using three terms of the
Taylor expansion for the frequency equation rather than two. They claim that the additional
term improves the solution for the head of impulse.
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Lloyd and Miklowitz [6J further refined the technique by taking into account the
contributions from higher branches; real, imaginary and complex. Though their study
was directed to the response in plates, their method is equally applicable to rods.

There have been two previous studies that do not suffer the shortcomings inherent to
the method of steepest descent. Both have used a method that restricts finding the response
close to the end of the rod and have shown not only the head of impulse but the behavior
behind the head.

The first of these is due to Miklowitz [7]. He formulated his problem in integral trans
forms but used an ingenious method for numerical integration that enabled him to find
the response near the end of the rod. His study is based on an approximate theory and
unfortunately at the time of the study the best theory available was due to Mindlin and
Herrmann [8J so in using it his results reflect the shortcomings of that theory. The Mindlin.
Herrmann theory takes into account the fundamental mode of steady state vibration and
one higher mode that is identified as the radial mode. Later, a study of the same problem
by Mindlin and McNiven [4J showed that for realistic values of Poisson's ratio this radial
mode is strongly coupled to a third mode identified by them as the first axial shear mode.
In addition, this later study described a critical value of Poisson's ratio and noted that for
values of Poisson's ratio below this value the second mode is indeed the radial mode but
that for values of Poisson's ratio above this critical value the radial mode is no longer the
second but is the third mode. The influence of the Mindlin-Herrmann theory on the
numerical results obtained by Miklowitz is discussed in the section on numerical analysis.

The second study was made by Bertholf [9J who used the exact three dimensional theory
of elasticity and solved the equations using finite differences. Our reservation abou this
work has to do with a mathematical weakness in his numerical analysis. Bertholfapparently
did not take into account the notion ofthe domain of dependence for hyperbolic equations
which puts a restriction on the selection of the time mesh size as a function of the space
mesh size.

In the method to be developed here we are able to exploit two circumstances. First
the equations governing the propagation of waves in an elastic rod are hyperbolic, and
second, the lines on the time-space plane that locate wave fronts coincide with charac
teristic lines. The method of characteristics is really only practical in solving problems
with two independent variables and so we have used an approximate theory instead of
the three dimensional theory for the propagation of waves. As we are dealing with circular
rods, our choice is the theory due to Mindlin and McNiven [4]. This theory allows for
frequencies below the cut-off frequency of the second axial shear mode and in the frequency
range permitted, the predictions from this theory match accurately the predictions from
the three-dimensional theory.

Using the method of characteristics one is able to reduce the Mindlin--McNiven equa
tions to two types of equations. The first type is the decay equation which is integrated
directly on the space-time plane to find the behavior on the first wave front. We explore
the domain beyond the first wave front by means of the canonical form of the governing
equations. These are valid along characteristic lines and are integrated using finite
differences.

The method has many advantages. The conditions on the end of the rod can be any
mixture of conditions including those that can be realized experimentally and the time
dependency can be arbitrary. The response is found near the end of the rod where it is likely
to be of most interest. From what we can aseertain, short of doing our own experiments.
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the response is accurate. The Mindlin-McNiven theory is used to its full capacity through
out the numerical analysis. We show that our numerical analysis is convergent, that is we
show that as the mesh size goes to zero, so do the error.

There are perhaps two shortcomings of the method. First, if one desires the response
at stations far from the end of the rod, or at distances far behind the head of impulse,
a lot of computer time would be needed. This is true not only because the response would
be needed far from the origin of the space-time plane where the numerical analysis origi
nates, but the mesh size would have to be small to obtain accurate results.

The Mindlin-McNiven equations predict no decay of axial strain along the line
representing the first wave front whereas intuition tells us there will be decay.

The method of characteristics is not entirely new to the problem of wave propagation
in rods. Tang [lOJ used characteristics along with the Mindlin-Herrmann theory to obtain
the average stress response Pz at stations close to the end of the rod.

2. METHOD OF CHARACTERISTICS FOR A SYSTEM OF LINEAR, SECOND
ORDER, PARTIAL DIFFERENTIAL EQUATIONS

The general method of characteristics is by this time classical knowledge and so will
not be reviewed here. What will be studied is a particular set of differential equations
which accommodates equations due to Mindlin and McNiven [4J which in turn govern
approximately the axisymmetric motions in isotropically elastic rods. The study will
show that these governing equations are substantially simplified when put into canonical
form along characteristic lines, simplifications that lend themselves to numerical analysis.

The particular set of differential equations treated here has been studied by P. C. Chou
and R. W. Mortimer [l1J and their canonical equations are the same as those developed
here. The same results could have been arrived at using a general method by Courant
and Hilbert [12J who first reduce higher order equations to first order equations and then
establish the canonical form of the equations along characteristics. Of the alternatives
our preference is for the method presented here as it is systematic and simple.

We consider a set of differential equations of the form

(i = 1, ... , n). (1)

In equation (1) Ui = Ui(X, t) but the Ch (Xij, fJij are continuous functions of x only. The usual
rules of indicial notation hold, i.e. u,x = au/ax etc; and repeated indices indicates sum
mation except that there is no sum on i.

Since Ui = Ui(X, t), we will consider the behavior of each Uk over the x-t plane. As the
dependent variables in the Mindlin-McNiven equations represent displacements, physical
considerations dictate that the Ui'S themselves will be continuous. However, we allow all
of the partial derivatives of the Ui to suffer finite discontinuities. The lines across which
these discontinuities occur will be called characteristic lines and will be designated as
x = x(t). We will enclose a function by square brackets to denote the finite jump of the
function across a characteristic line, i.e. [fJ designates the finite jump of the function (f)
across x = x(t). The order of the discontinuity will match the order of the derivative
suffering the jump. We now proceed to establish the equations of the characteristics for
each order of discontinuity, and begin with the second order as it is the simplest.
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(a) Second order discontinuities

For this order

Y. ME",;! and H. D. McNlvE~

[ui.lIl = 0
cf

On both sides of x =x(t), equation (I) is satisfied. If we write equation (I) for both sides
of x =x(l) and take the difference, we get

along x = .x(t).

Here we use Hadamard's lemma which states "'that [IJ = °along x =x(1) implies
[It] +(dx/dtHIJ = 0". We apply the lemma to each of the first derivatives to obtain:

(4)

Substitution of equation (4) in equation (3) gives

11 .. ,If(~1;) 2 i. [Ui.,xl O.
But by definition. [ui.xxl # 0, so

dx
dt

t. c/,

the equations for the families of lines along which second order discontinuities occur.

(b) First order discontinuities

For this order.

[U;] ()

~ 0: [UiJ i' ()

along x = .x(l), and on both sides of x =x(l) equation (I) is satisfied.
As before we use Hadamard's lemma; this time with the dependent variables themselves.

The resulting equation is

clx" . IU·I.cI r L I.X,

As equation (I) is of second order, and we are dealing with first order discontinuities.
we put equation (l) in the form of an integral equation;

J
b I C In JI> In

Ui.xx dx -.2'=] Ui.' dx = (lijU) dx + {JijU}.x dx.
(/ (i (. t 1/ 1I 11

Equation (9) can be written

1 a fn fh
Ui.Ab, t) - ui.Aa, t) - "3' 1 Ui.t dx = (eii) - {Jij.Ju} dx + (Ji;(b)Uj(b, t) - (Jij(a)u}(I.I, t).

(j ct (/ (/

(9)

(10)
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We now suppose that the interval [a, bJ encloses x = x(t), i.e. a < x = x(t) < b, so that
the interval may be divided into two parts namely [a, r(t)J and [x +(t), b].

Accordingly we can write equation (10) as

1 {a fX- afb }uijb, t)-u;ja, t)-7 ~ Ui.' dx+~ _ Ui., dx
c, ut a ut x +

= f(CXij- f3ij.x)Uj dx + f3iib)uib, t)- f3;ia)uia, t),

or

1 { dr fX- dx+ fb
u;jb, t)-uija, t)-7 Ui.'(X-, t~d+ Ui.tt dx-ui.'(X+, t~d+ _

c, t {/ t x +

= f (CXij - f3ij,x)U j dx + f3ii b)Uib, t) - f3ij(a)uia, t).

Ui"t dX }

(11)

We now assume that x = x(t) is a continuous and differentiable curve on the x-t plane,
so dx- jdt = dx +jdt = dxjdt. We shrink the interval [a, bJto a point so that "a" approaches
x from the left and "b" approaches from the right. For this case equation (11) reduces to

If we substitute equation (8) in equation (12) we find

{
I (dX)2}1- cT dt [Ui.xJ = o.

As [Ui.xJ i= 0,

(12)

(13)

dx

dt

are the lines for first order discontinuities.

± Ci (14)

(c) Comments on characteristics

For the particular set ofdifferential equations ofequation (1) we see that first and second
order discontinuities occur along the same set of lines called characteristics. Indeed it is
simple to show by the method of part (a) that all higher order discontinuities, if they occur,
will do so along the same set of characteristics.

Examination of equations (6) and (14) shows that when the c;'s are constants the
characteristics will be straight lines. It is also well known that when the differential equa
tions are hyperbolic, as ours are, the c;'s are real.

Corresponding to each differential equation there will be two families of characteristics
on the (x-t) plane, a family with the slope Ck and a family with the slope (- cd. Because
of the nature of the set of equations (1) the dependent variables Ui will be coupled by the
lower order terms on the right side of the equations. One can also observe from equa
tions (5) and (13) that when a particular characteristic line accommodates a jump in a
number of derivatives of one dependent variable, the lowest order derivative of those
suffering a jump will be uncoupled.
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(d) Canonical form of the differential equation

Along characteristic lines equations (1) are considerably simplified. To get the simplified
or canonical form we begin by writing equations (1) in the form

and into this we substitute the equation of the characteristic either equations (6) or (14),
glvmg

(15)

Equation (I 5) can be written

(+~: Ui,xx +Ui,xt) ± (ui,xr +:~Ui,rt)

which in turn can be written

or

+d(ui,x)-*d(Ui,r) = =Fdx(iXiju j + (JijUj,x)',
(16)

Equation (16) is the canonical form of equations (1) along dx/dt = =FCi respectively and
in it i, j = 1"", n, with no sum on i, To use this equation the first derivative must be
continuous and differentiable along the characteristic but second and higher order dis
continuities are permitted, The equations are particularly useful as they lend themselves
to numerical analysis, a fact that will be displayed in a later section,

(e) Decay equations for first order discontinuities

Since first order discontinuities are not permitted with the use of equations (16) and
they are admitted in the theory there must be a special method of dealing with them.
For first order discontinuities we develop decay equations, They are developed from
equations (16) by recognizing that even though the equations are not valid along the
characteristic itself, they are valid on each side of it. The decay equations are used to
calculate the changes in the discontinuities of the first derivatives from station to station.
The decay will depend on both the initial and boundary conditions,

As there are two families of characteristics dx/dt = + Ci and dx/dt = - Ci, each will be
treated separately,

(1) Along dx/dt = ci ' We begin by using equations (16) with the choice of the lower
sign on each side of the equations, We assume that Ui.x and Ui,r are continuous and dif
ferentiable on both sides of a characteristic, and write equations (16) on either side of a
characteristic line and take the difference, We obtain

did
---- [u .J - ---- Cu· ] = {{[u- J
d 1•.\ • d!.t II f,X'

X (j X
( 17)
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In this equation and in all of what follows there is no summation on the i's. Since [uJ = 0
along the characteristic we have from equation (8)

dx
[Ui,tJ = - dt [Ui.xJ = -Ci[Ui,x].

Substituting (18) into (17) gives

d 1(1 dCi )-[u· J+- - --f3.. [u· J = 0dx I.X 2 Ci dx II I,X •

Integrating equation (19), we find

(18)

(19)

(20)

The K;'s are constants to be determined from the boundary and initial conditions. Em
ploying equation (18) in this same way we find the decay equations for the discontinuity
of Ui,t:

(21 )

(22)

(2) Along dx/dt = - ci ' In a similar way, the decay equations for the discontinuities of
Ui,x and Ui.t can be obtained. They are

[Ui.xJ = Kici-+eHPiidx

3. FORMULAnON OF THE PROBLEM

Our study is of a semi-infinite, cylindrical rod, of circular cross section, made of an
isotropically elastic material. The rod is referred to a cylindrical coordinate system (r, e, z)
within which the center of the end of the rod is located at the origin and positive z is
measured along the axis of the rod. We are concerned with axisymmetric motions of the
rod and since our theory must involve only one space and one time variable we resort
to an approximate theory. Our choice is the theory developed by Mindlin and McNiven [4J
as it embraces a comparatively large frequency range and within that range duplicates
the exact theory very closely, As it will be necessary to refer to it constantly we reproduce
the essence of that theory here.

The theory is contained in the three equations

'k2 2 2a
u w.xx +2K j (k -2)u,x+ b/lZ = bW,H

'2k2./, 6K2 6a 2 2u 'f',xx+ 2(bu,x-41jJ)--Z = b K 4 1jJ,H'
/l

In equations (23); R = ()"rlr~a' Z = rrzlr~a'

(23)



878

and
X=
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a dimensionless distance
(/

T = ~t(i!)'
(/ p

/-;2 = 2( I -- v)

(1-21')'
where

() a known constant
t time
(/ radius of the rod
fl shear modulus of elasticity
f! mass density
v Poisson's ratio.

a dimensionless time

The Ki's (i = 1-4) are adjustment factors introduced in the theory to make the three
spectral lines of the theory match more closely the lowest three branches of the exact
theory. They are functions only of Poisson's ratio, and have been extensively tabulated
by Kaul and McCoy [3].

These tabulated values are based on matching the properties of the spectral lines from
both the approximate and exact theories at cut off. This is not the only way that the spectral
lines can be matched. Kaul and McCoy themselves suggested matching points on the
complex branch, and as we are dealing here with stations near the end of the rod, this
alternative was considered seriously. Study, however, showed that the additional effort
involved on the alternate matching was unnecessary. The only frequencies on the complex
branch that influence the motions near the end of the rod are frequencies in the neighbor
hood of the end mode [13]. For this neighborhood, with the adjustment factors used in
this paper, the complex branches from both approximate and exact theories match almost
perfectly.

The generalized displacements u, wand l/J in equations (23) are related to the radial
and axial displacements Ur and U z according to

(241

where Y. = ria; r is the radial distance.
The constitutive equations relating these generalized displacements and generalized

forces are

(~) Pr = 2Kf(k2-1)u+()K ,(k2- 2)w.x

2(~) Pz = c5k2w.x+2K,(k2~2)u

4(~)Prz = K~(c5u.x-4t/J)

6(~k", = c5 k2 l/J.X'
III

(25)
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where the generalized forces are defined by

Pr = l' (O"r+O"O)ct do:

Pz = 11

O"zo: do:

PIjJ = l' O"zU - 20( 2 )0: do:.

Finally, the strains are given in terms of the generalized displacements according to

U
I:: r = KI-

a

U
1::0 = KI

a

(26)

(27)

The authors of the approximate theory have shown that a unique solution will result
when there is specified

(i) throughout the rod, the initial values of u, w, t/J and Ii, IV, if,
(ii) throughout the rod one member of each of the two products Ru and Z(w - t/J),
(iii) at the end of the rod, one member of each of the three products Pzw, PIjJt/J and Przu.

We now proceed to formulate the problem in the context of the method of charac-
teristics. Equations (23) take the form of equations (1) when

0 0 0

(O:i) = 0
24K~

0
i5 2 k2

0 0
8Kf(k2 -1)

15 2K~ (28)

0 0
-2K I (k

2 -2)

i5k2

(Pi) = 0 0
-6K~

bf2
4K I (k

2 -2) 4

i5K~
- 0
15
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Further, (UI' U2, U3) = (w,!/J, u) and

J K~n = ---- ..
. K 2

3

For a reasonable range of Poisson's ratio we assume that
'") 7 ,)

('1 > ('2 > n· (29)

We note that c 1 = k is the dimensionless form of the dilatational wave velocity
[(A +2f.1)/p]l.

Even though the method of characteristics is general and could be used to handle a
large variety of boundary and initial conditions, we are concerned here with a specific
problem, namely the response of a rod, initially at rest, whose cylindrical surface is free of
traction, and subjected to a uniform pressure on the end of the rod that has an arbitrary
dependence on time. The boundary conditions take the form;

R=Z=O

(}=(O, r) = -f(r)H(r)

r,=(O, r) = 0.

(30)

In equations (30) H(r) is the usual Heaviside step function and f(r) is a prescribed,
continuous function of time.

In terms of the generalized forces the boundary conditions on the end of the rod can
be written:

- f(r)H(r)
PAO, r) =----2-

P1/J(O, rJ = °
P,AO, r) = 0.

(31 )

Using equations (25) these conditions can be expressed in terms of the generalized displace
ments according to

where

pw,AO, r)+qu(O, r) = g(r)H(r)

!/J.AO, r) = °
(jujO, r)-4!/J(0, r) = 0,

(32)

The initial conditions are

g(r) =
af(r)

2f.1
(33)

u(x, 0) = u,r(x,O) = 0

w(x,O) = w.r(x,O) = 0

!/J(x,O) = !/J,rlx,O) = o.

(34)
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The general problem is one offinding solutions ofequations (23) subject to the boundary
and initial conditions given by equations (32) and (34).

The rod behavior we are seeking is the response to an input of normal stress on the
end of the rod. As the resulting disturbances will move down the rod, the behavior is best
understood if it is described using the notion of wave fronts. The first wave front is defined
as the boundary between disturbed and undisturbed regions of the rod, while second,
third etc., wave fronts are related to the notion of the arrival of the additional disturbances
to an already disturbed material point. When the material at a point becomes suddenly
disturbed from an undisturbed state or when an already disturbed material point has
some additional disturbance, it can only do so if some derivative of the displacement
vector suffers a finite jump at the point. On the x-r plane, a wave front can be represented
by a line and by definition that line will be a characteristic. In our problem the initial
conditions are all zero which means that of a family of characteristic lines, it is the ones
emanating from the origin of the x-r plane that will be the wave fronts. The order of
discontinuity of the characteristic lines describing the wave fronts will depend on the
boundary conditions on the end of the rod, specifically the dependence on time in the
neighborhood of r = O.

Since equations (23) represent three equations, there will be three wave fronts, 8 1 ,82

and 83 , shown in Fig. 1. In the boundary conditions equations (30), f(r) is an arbitrary
continuous function of r. Uf(O) =1= 0, we will show shortly that along 8 1 the first derivatives
of w will suffer a finite jump, higher order derivatives of u and t/J will have a finite jump
and that along 82 and 83 the discontinuities will be of order two or higher for all three
generalized displacements. As 8 1 is a characteristic line of first order discontinuity in w,
it is necessary to use decay equations to find w,x and W,t along 8 1 immediately behind
the wave front.

FIG. I. Description of characteristic lines and wave fronts on the (x-r) plane.
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We turn to the decay equations themselves, equations (20), (21) and (22) as they apply
to 5 1 ,52 and 53, and note from the second of equations (28) that [3 11 ,~ {i 2 fi u 0
The decay equations are therefore,

[w,] .- AI \\'.J - --C1 Al along 51

[t/J.XJ - ,12- [lfl,l -- -- C2 A 2 along 52 (351

[1I.XJ ~ A" --- C.1 A 3 along 5.1 .

The Ai'S are constants obtained from the behavior of the boundary and initial conditions
in the neighborhood of the origin of the (XT) plane. Using boundary conditions equa
tions (32) and initial conditions equations (34). and noting that [u] ,= [1{1 Jc 0
everywhere in the (XT) plane one obtains

1I',lO, 0)]
g(O)

p

!:Vl,(O,O)] =·0

[11,(0.0)] = O.

Comparing equations (35) and (36) we can identif~

g(O)
4

1
·C.

L A, O.

Accordingly the decay equations are

[w
g(O)

p

[t/J.,] = 0,

[u.,l = 0,

[Ifi,] = 0

[u.,J = 0

('lg(O)

p
along 51

along 52

along 53'

It is worth noting that the Mindlin-McNiven theory indicates no decay of the first deriva
tives of the generalized displacements.

From equations (38) and from the fact thatI(T) is a continuous function of Twe conclude
that in the disturbed region behind the wave front 51, all of the first derivatives of the
generalized displacements are continuous so that the canonical form of the equations are
appropriate. Within the framework of the approximate theory these equations, equa
tions (16), have the form,

1
=+= d(u.,) - -d(u.,)

('3

dx
along -- = + C1

dT

dx
along- = +C2

dT
(39)
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Along with the six equations of equations (39) we exploit the fact that the displacement
field is continuous and differentiable, so that along any line on the X-T plane

dw W,x dx + W,r dT

dl{; = l{;,x dX+l/J"dT

du u", dx+u,r d-r

giving us nine working equations,

4. NUMERICAL ANALYSIS

(40)

We seek the generalized displacements u, t/J and wand their first derivatives at a station x
and at a time T, and having these we can calculate the strains and stresses. We refer to
Fig, 1, which shows the (X-T) plane. On this plane, the line Sl(X-CjT = O} divides the
spacc,-time domain into two parts, the domain D j representing undisturbed particles
and D2 representing particles of the rod which are in motion. The part D2 , which is the
part that interests us, is subdivided by means of one primary and two secondary grids.
The primary grid shown by fine solid lines is formed by two sets of parallel lines. The
first set (X-CIT const) is parallel to the line SI' and second set (X+CIT = const) has
equal but opposite slopes. Each diamond shaped element has diagonals measuring 2Ax
and 2AT. The secondary sets of grid lines are members of the families X±C2T = constant
and X±C3T = constant. They are shown dotted in Fig. 1, and are used when analyzing
an individual element. As the dotted lines fall within the element, the domain of dependence
of a point is conserved.

In what follows the nine quantities u, u,x, u,.. l/t, l/t,x, t/J,n W, w,x, w.< are considered,
for convenience, to be the nine elements of the vector Yi' To establish Yi in the region D2 ,

we start at the origin and along S1, where it is known, and fan out into the region element
by element. To be more explicit, we know Yi at the points 0 and 1 in Fig. 1, and using a
technique to be explained shortly, we find Yi at the point 2. Having Yi at the points 1, 2
and 3, we use the same technique to find Yi at the point 4, and so forth,

In explaining the technique we refer to element M shown in Fig. I; and to its detached
enlargement. Yi is known at points A j , A 7 and A 2 and is sought at the point A. As there
are nine unknowns, we need nine equations to establish them.

The boundary lines AA1 and AA2 are the characteristic lines Xl -CIT = constant,
and x +CIT = constant respectively. Through the point A we draw the characteristic
lines AA 3 and AA4 with slopes ±c2, and characteristic lines AA 5 and AA 6 with slopes
± C3. The values of Yi are calculated at A 3 and As by interpolating the values at A 1 and
A 7, and at A4 and A6 by interpolating the values at A 7 and A 2. Six of the nine equations
come from using six canonical equations, equations (39), one each along the six charac
teristic lines per element converging on A.

The three remaining equations are equations (40). As these are valid for any line on the
(X-T) plane, we choose to use them along the diagonal line AA7 (x = constant). The nine
elements of Yi are found at A by solving the nine equations by the method of finite dif
ferences.

For an element L adjacent to the line x = 0, the procedure is the same except that the
three equations along the three lines x ('iT = constant (i = 1, 2, 3) must be replaced by
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the end boundary conditions at x = 0, equations (32);

pw,AA)+qu(A) = g(A)

ljJ.x(A) = 0

bU.AA)-4ljJ(A) = O.

(41)

When one is dealing with numerical methods of this kind, convergence must be con
sidered. In the Appendix we show that for fixed point (x*, r*) on the (x - r) plane, the error
becomes zero as the mesh size ~r goes to zero.

5. NUMERICAL RESULTS

Our choice is to calculate and exhibit three quantities; the radial strain <-r and the
axial force Pz for comparison with other published results and the axial strain <-z which
can be checked against future experiments. For an input on the end of the rod we choose
f(r) = a constant Po. With the method of characteristicsf(r) can be an arbitrary function
and this particular choice was made for two reasons; first, so that we could compare the
results with those obtained by Bertholf [9J and second, because of the limitations of the
approximate theory. As the Mindlin-McNiven theory is limited to frequencies less than
that of the cut-off frequency of the second axial shear mode, it is advisable to choose an
input function for which the magnitude of its Fourier transform decreases with increasing
frequency. The Fourier transform of Po decreases as (I/w) with increasing frequency.

The rod is assumed to have a Poissons ratio of 0·29. The numerical analysis was carried
using a mesh size dictated by ~x = 0·10. The response was evaluated at two stations;
the first at x = 7·60, about I dia., and at x = 15·20, about 2 dia. from the end of the rod.
The responses are in Figs. 2-5. The approximate theory accommodates a distribution of
the axial strain across a rod cross section and so Figs. 3(a) and 3(b) show a prediction of this
strain at the center of the rod as well as on its lateral surface. It should be noted from the
figures that at any station, <-" <-z and Pz asymptotically approach their static values as time
increases indefinitely, which ensures the stability of the numerical procedure.

We have attempted to appraise the numerical results three separate ways, with varying
degrees of success. The first way is by comparison with published results of experiments.
The best experiments were carried out by Miklowitz and Nisewanger [14] though the
best report of the experiments appears in the paper by Bertholf [9] no doubt after private
communication with the authors.

The comparisons can be seen in the figures; we will compare radial and axial strains
separately. The radial strains are shown in Figs. 2(a) and 2(b) at two separate stations. The
figures show that the predicted and experimental responses have approximately the same
peak value but that the head of impulse for our theoretical response is steeper than the
experimental. In Fig. 3(a) we see that the axial strains on the lateral surface predicted by
our theory and recorded in experiments differ both at the head of impulse and behind it.

The second comparison is with the numerical results presented by other authors.
Comparison is valid with only two of these because all of the others formulated their theory
using integral transforms, found it necessary to use the method of steepest descent in their
numerical analysis, and so calculated the response at stations far from the end of the rod,
whereas ours was calculated close to the end.
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Of the two that calculated the response close to the end of the rod, the earliest work
was by Miklowitz [7]. His work differed from ours in three respects; he used different
values of Poisson's ratio (0·244, 0·325), he adopted mixed-mixed conditions on the end of
the rod, and based his work on the theory due to Mindlin and Herrmann [8J rather than
Mindlin and McNiven [4J which came later. Because we were interested in making a
comparison with Miklowitz we ran a computation using his Poisson's ratios and end
conditions for the quantity Pz . For the case v = 0·244 the match over a limited time range
is good. The first amplitude and half period match exactly. For the case v = 0·325 the
match of the same quantities is just fair. We speculate that the difference in matching is
due to the shortcomings of the Mindlin-Herrmann theory. When v = 0·244 it is less than
vc = 0,2833, the "critical" value, so that the second mode is the radial mode the only
higher mode in the Mindlin-Herrmann theory, whereas when v = 0·325 the second mode
is not the radial mode making the theory less appropriate for this case.

The other pertinent numerical results are due to L. D. Bertholf [9]. He used the three
dimensional theory of elasticity, solving the equations by finite differences. The numerical
analysis, while appropriate, seems to us to have a mathematical weakness. Bertholf
apparently did not take into account the notion of the domain of dependence for hyperbolic
equations which puts restriction on the selection of the time mesh size as a function of the
space mesh size. In spite of this reservation concerning his results and the slight difference
in the two Poisson's ratios (he used v = 0,3125), we compared the numerical results for
the radial strain Gr and the axial strain Gz on the surface.

The comparisons can be seen in Figs. 2(a), 2(b) and 3(a). The closeness of the two radial
strain responses seen in both Figs. 2(a) and 2(b) helps to give confidence that the predicted
are close to the true responses. In Fig. 3(a) the axial strain responses along the axis ofthe rod
and on the lateral surface must be considered separately. The jump in Gz along the axis
of the rod at the head of impulse is correct and consistent with the three dimensional
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exact theory as discussed by Tang and Yen [15]. Apart from the head of impulse we have
nothing with which to compare the strain along the axis.

The responses of axial strain on the lateral surfaces predicted by Bertholf and ourselves
are fairly close to one another except at the head of impulse. For this part of the response
Bertholf is closer to the truth. There is no jump in Gz at the head of impulse as our response
shows. It is likely that the time response is close to the functional form (t z/ltlyt, ltl being
dilatational wave velocity, suggested by Rosenfeld and Miklowitz [16].

The third method used for appraising the results is one developed by the authors and
will be presented in detail in a forthcoming paper. The method consists of using the same
approximate theory, the same conditions on the end of the rod and initial conditions,
but of expanding the solution in terms of a power series in time about the wave fronts.
Here, it is used to appraise the radial strain at the end of the rod, x = O. The series has the
form

(42)

where all of the A 2;s are positive. The method makes a powerful tool for judgment because
the series converges very quickly and for a particular truncation one is able to judge
closely how the succeeding term would improve the answer. If we examine Fig. 5 we see
first the radial strain response if we use two terms of the expansion. We also know that
the third term in the expansion is positive and if it is used we get higher values of Gr also
shown. We also know that if the fourth term were used it would be negative and smaller
than the third so that, if included, the strain would be lower than that for 3 terms but
closer to the 3 term curve than to the 2 term curve. As the series converges quickly one
can conclude that the radial strain response using tbe method of characteristics is very
close to where it would be if a large number of terms ofthe expansion were used, the correct
response within the limits of the approximate theory.
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APPENDIX

Convergence proo!jor the numerical method

The proof is modeled after a more general proof due to R. Courant el af. I con·
cerning the finite difference method as it applies to the canonical form of quasilinear
hyperbolic equations along the characteristics using rectangular and cllrvelinear networks.

The proof begins by letting

The equations along the characteristics then have the form

where:

dx
i '''' I. 2 along characteristics J co, ± C I

( T

dx
3, 4 along characteristics± (' 2

dr

dx
5.6 along characteristics J ±c}

( T

dx
i = 7. 8. 9 along characteristics = O.

dr

and au and bij are constants.
We discretizc the (x-r) plane with the network shown in Fig. I so that the point (il. Ii

corresponds to the point with coordinates .\: ,,~ kD..\:. r lD.r. Let Yi be the finite difference
solution of equation (A-2). i.e.

.\)A)-- y)A;)
(I. .- huYk4) (no sum on i)

'I S;l'H

where I ~::; s; S 2.
Using interpolation. y;(A;) is expressed in terms of J)A 7 ) and Yi A Jl or \'/.4 2 ) (Fig. t i.

I.e.

riAi) = 'Z;J';C47)+/:liYi(A I or A 2 )

where 'Zi' Iii are interpolation constants with

lA-4)

:I; ? O. /5; ?: O.

Substitution of equation (A-4) into equation (A-3) gives:

aijy)A) c= siD.rbijy;(A) +aij[:Xiy)A 7 ) + fJiY) A 1 or A 2)] (no sum on i). (A-5)

Let Pi be the exact solution of equation (A-2): i.e.

(A-6)
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with

piA;) = CXjpiA7)+!3iPiAI or A2)+OiL1r2). (A-7)

Substitution of equation (A-7) into equation (A-6) gives:

aijpiA) = SjL1rbiiA)+aij[cxiPj(A7)+!3jpiAI or A2)]+Oi(L1r2) (no sum on i). (A-8)

Taking the difference of equations (A-5) and (A-8), one finds:

ajjviA) = siL1rbijvj(A)+aiJCXjviA7)+!3jViAI or A 2)]+Oj(L1r2) (no sum on i) (A-9)

where Vj = Pj- Yj'

Or,

a··vk,l = sL1rb ..vk,l+a ..(a·vk,l-2+!3.vk-Iork+l,l-I)+O·(L1r2) (no sum on i) (A-IO)
I) J I IJ ) lJ I J l ) I

where

VJ,l = vikL1x, lL1r) (Fig. 1).

From equation (A-tO), one finds

Let us introduce the measure of error as

E~ = maXlaijvJl
I

Then, from equations (A-II) and (A-I2) one obtains

(A-II)

(A-I2)

(A-l3)

where!3I,!32, aI, a2 are positive constants with al +a2 = 1. Equation (A-I3) is the governing
equation for the growth of the error, Using equation (A-l3), together with the boundary
and initial conditions, one obtains:

or

or

E~ <

Putting M = rll, one finds

(A-14)

Now, we let

(A-I5)
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For fixed values of (x, r), and taking limit of equation (A-I5) as I goes to infinity (this is
equivalent to letting ~r --+ 0), one finds:

or (A-16)

Therefore, we conclude that for a fixed point (x*, r*) on the (x-r) plane, the error becomes
zero as the mesh size Llr goes to zero. Hence, the convergence of the numerical procedure
used in this paper is established.
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A6cTpaKT-McnOJlb3Yll MeTOA xapaKTepllCTI1K, onpeAeJllleTCli nOBeAeHHe nOJly6ecKOHe'lHOro, 1130TponHoro,

ynpyroro CTeplKHlI nOA BJlHlIHlleM HMnYJlbCa, 3aBIIClIl.I.\ero OT BpeMeHH H npl1JlOlKeHHOro Ha ero KOHl..le.

fiplIMeHlIeTcli npll6JlIIlKeHHali TeoplIll MIIHAJlIIHa II MaK HIIBeHa AJlll CBeAeHlIlI 3aAa'll1 K TaKoli, B KOTOpoli

ABlIlKeHlIlI 3aBHCliT TOJlbKO OT npOCTpaHCTBeHHoli KoopAHHaTbl II BpeMeHII. OnpeAeJllleTCli nOBeAeHlle

CTeplKHlI B TO'lKaX 6Jlll3H ero KOHl..la AJlll cTyneH'IaToro IIMnYJlbCa AaBJleHlIlI. CpaBHIIBaeTCli C pe3Yl10MeMI..lIIl..l

nplIBOAIIMbIMIl B APyrllx ony6JlIIKOBaHHblx pa60Tax H C pe3YIIMeMOH aBTopOB, HaliAeHHblM He3aBI1CIlMO


